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In this paper we focus on the thermodynamical properties of the S = ' / 2  Heisenberg chain with alternating 
antiferromagnetic and ferromagnetic exchange interactions, J1 and J2. In the first step, the magnetic and specific 
heat properties of this system have been calculated as function of a = J2/1 J1 I from a general numerical procedure 
based on closed spin chains of increasing length. A distinctive behavior characterized by a maximum in the XT 
vs T plot is predicted when the ferromagnetic interaction is the dominant one (i.e., for a > 1). Conversely, 
antiferromagnetic-like behaviors are predicted when the antiferromagnetic interaction dominates (i.e., for a < 1). 
With respect to the magnetic specific heat, two rounded maxima can be distinguished in the CJR vs T plot for 
sufficiently different exchange values and dominant ferromagnetic exchange, which have been associated with 
the two kinds of exchange interactions. The magnetic susceptibility results derived from the model have been 
conveniently fitted to rational unified expressions. These expressions were used to describe the magnetic behaviors 
of two copper(II) complexes exhibiting alternating chain structures: The compound Cu(TIM)CuC4 (TIM = 2,3,9,- 
lO-tetramethylcyclo-1,4,8,1l-tetraazatetradecane- 1,3,8,10-tetraene), which shows dominant ferromagnetic exchange 
(J& = -7.5 K; a = 3), and the compound [Cu(bpym)(OH)2(N03)2]*2H20 (bpym = 2,2' bipyrimidine), which 
exhibits dominant antiferromagnetic exchange ( J l k  = -200 K; a = 0.75). 

Introduction 

One dimensional (ID) magnetic systems provide excellent 
examples on which the development of suitable theoretical 
models affords a better understanding of the exchange interac- 
tions in extended lattices. In the last two decades this area has 
been characterized by a close interaction between inorganic 
chemists and physicists.' More recently, the advent of organic/ 
molecular-based magnets has enriched this field leading to a 
very productive interplay between organic and inorganic chem- 
ists.2 As a result, new classes of molecular magnetic materials, 
often displaying low dimensional structures, have been discov- 
ered which require the development of new theoretical models 
in order to correlate crystal and molecular structures with 
magnetic properties. In this work we focus on systems 
containing simultaneously ferro- and antiferromagnetic exchange 
interactions. Several examples of compounds of this kind have 
been recently reported in both organic and inorganic chemistries 
although no theoretical model is available for analysis of the 
magnetic data. However, there are at least two reasons that 
justify the theoretical effort in this sense: (1) Often these 
systems have controversial ground spin states which depend on 
the relative magnitude and topology of the two exchange 
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 interaction^.^ (2) A detailed knowledge of the value of the two 
exchange parameters and the subsequent correlation with the 
structure is of particular importance in organic chemistry in the 
design and construction of new high-spin organic  polymer^.^ 

The simplest case showing alternating exchange interactions, 
J1 and J2, is that encountered in a linear chain of spins S = l / 2 .  

The restricted dimensionality of such a system permits a 
quantitative estimate of the magnetic properties as a function 
of J1 and J2. The case for a positive alternating parameter a = 
J2/J1 (i.e. antiferromagnetic/antiferromagnetic (AF/AF) system) 
has been extensively studied in recent years5s6 due to its 
similarity with one-dimensional materials that undergo a spin- 
Peierls tran~ition.~ Little theoretical work has been developed 
for a < 0 (i.e. ferromagnetic/antiferromagnetic (F/AF) system). 
Preliminary magnetic results on several inorganic compounds 
showing exchange alternation were recently reported by Hatfield 
et al.* In this paper we focus on the thermodynamical properties 
of the alternating F/AF Heisenberg chain. From a numerical 
procedure based on closed spin chains of increasing length, the 
magnetic and specific heat properties of this system are 
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Figure 1. Thermal dependence of the reduced susceptibility of N = 6 
(dotted line) and N = 7 (solid line) rings for different values of the 
altemating parameter a. 

calculated and fitted (in the former case) to closed-form 
expressions. These are very convenient to fit the data of real 
compounds exhibiting alternating chain structures. 

Model 
We have developed a general computing program for solving 

the problem of a Heisenberg chain containing 2N identical spins 
with spin quantum number S. The model can take into account 
altemating nearest-neighbor interactions, J1 and Jz,  which can 
be anisotropic, and a next-nearest neighbor interaction, J3, that 
can also be anisotropic. Further, a term considering the local 
anisotropy, D, can also be introd~ced.~ The principal aim of 
the program is to compute numerically the parallel and 
perpendicular susceptibilities. Other thermodynamical proper- 
ties such as the specific heat can be calculated at the same time. 
Closed chains are considered since then some additional 
symmetries in the final Hamiltonian, as for example spin space 
and geometrical symmetries, can be introduced. As shown 
before, these symmetries drastically reduce the size of the 
matrices to be diagonalized and the required computing time.loJ1 
A more detailed description of the program is described in the 
Appendix. 

In the present case the spin is S = l/2, J3 is ruled out, and J1 
and JZ are assumed to be isotropic and of different sign. J1 is 
negative and corresponds to the antiferromagnetic coupling, 
while JZ is positive and corresponds to the ferromagnetic one. 
The exchange hamiltonian can be written as 

N- 1 

H = - [J,sz,.s,i+, + J,S,i.SZi-11 ( 1 )  
i =  1 

The calculations are limited up to rings of 14 spins ( N  = 7) 
using a IBM 3090/2VF machine. Notice that previous calcula- 
tions on alternating chains were limited to N = 5 in the AF/AF 
case? and to N = 6 in the F/AF one.8 

Magnetic Properties 
All the magnetic curves are plotted in terms of reduced (non- 

dimensional) quantities. The reduced temperature is defined 
as T, = RT/IJ11 and the reduced susceptibility as xr = XMIJ11/ 
[N.&p~~/4].  In this way the product x,T, tends toward unity 
in the high temperature limit. In Figure 1 the thermal variations 
of the magnetic susceptibility for N = 6 and 7 are compared 
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Figure 2. Thermal dependence of the reduced product XT of the N = 
7 ring for different values of the alternating parameter a. The dashed 
curve corresponds to a = 1. Above and below this curve are situated 
the curves for a > 1 (2, 3, 5 ,  8, 10) and a < 1 (0, 0.5). 

for different values of the alternating parameter a, defined as 
J2/1J1 I. As may be seen, for the lower a values, the two curves 
are coincident in the reported temperature range (down to T, = 
0.05). Little differences in xr become to be observable in the 
low temperature range (below T, % 0.4) for a L 3 and 
increaseswhen a is increased. The two set of curves differ by 
less than 4% at Tr = 0.15, indicating that above this temperature 
the convergence is rather rapid, and the N = 7 ring should 
describe the behavior of the infinite chain in a satisfying manner, 
making it unnecessary to extrapolate the finite-ring results 
(probably the values for N = 7 differs from the true limiting 
curve by less than 1%) to the infinite limit. 

With regard to the influence of the exchange altemation, the 
plot described above shows that when a increases, the maximum 
in x increases and its position is shifted toward low temperatures. 
A more convenient plot is that of the product xrTr vs Tr (Figure 
2). This plot is particularly useful when the ferromagnetic 
exchange JZ is the leading parameter (a > 1). In such cases 
xrTr exhibits a continuous increase as T is raised, followed by 
a rounded maximum which can be taken as the signature of an 
alternating F/AF chain with dominant ferromagnetic interactions; 
finally, x,T, sharply decreases towards zero when approaching 
T = 0, in agreement with the nonmagnetic S = 0 ground-state 
of the chain. When antiferromagnetic interactions are the 
dominant ones (a < l), antiferromagnetic-like behavior is 
observed. This behavior exhibits little sensitivity to the ferro- 
magnetic exchange value. This observation emphasizes that it 
will be very difficult to make clear the presence of ferromagnetic 
exchange interactions from the magnetic data. 

In order to handle with ease the above numerical results for 
the analysis of experimental data, it is convenient to fit these 
theoretical susceptibility curves to a unified expression for x, 
as a function of Tr and of the alternation parameter a. Following 
a similar procedure to that reported by Hatfield et al.6 for the 
alternating antiferromagnetic case, we found that the simplest 
rational expression which better reproduce the numerical results 
is 

x, = [AT: + BT: + CT, + D]/[T: + ET: + FT: + 
GT, + H3 (2) 

where A-H are the fitting parameters. In view of the definition 
of x,, parameter A is equal to unity. For the rest of the 
parameters, a careful study of their dependence on a allows 
them to be fit to polynomial expressions of third degree in a: 

xi = x,, + x , a  + x2a2 + x3a3 (3) 
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Table 1. 
a s 2  

Coefficients for the Polynomials Valid in the Range 0 5 
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- 
A 
B 
C 
D 
E 
F 
G 
H 

Xn 

1 
5 

-1 
0.05 
5.2623 
0.44976686 
0.1894803 1 
0.28437797 

Xl x2 

0 0 
0 0 
0 0 
0 0 

-0.33021 0 
-0.99234827 -0.00881524 
0.36766434 0.51001414 

-0.16749925 -0.18725364 

x3 

0 
0 
0 
0 
0 
0.1548 15 17 

0.093748 17 
-0.2795751 

Table 2. Coefficients for the Polynomials Valid in the Range 2 5 
a s 8  

A 1  0 
B 5  0 
C 18.49535656 -6.1326294 
D -1.476022 0.238098 
E 5.3195744 -0.25251758 
F 20.12902219 -7.98423527 
G -2.69685 1543 2.7 16480574 1 
H 5.1 120826687 -2.478242688 

0 0 
0 0 
1.63540894 -0.114937 

-0.0394290 0.001851 
0 0 
1.827504022 -0.116829819 

-0.310485224 0.008341925 
0.457077363 -0.02686769 

Two sets of polynomials have been obtained which are valid 
in two different ranges of a. The former one covers the range 0 
5 a 5 2 (Table l), while the second one is valid for 2 5 a 5 
8 (Table 2) .  The agreement obtained from these two sets of 
parameters is excellent. In the overall temperature range12 these 
two expressions reproduce the numerical results with an 
agreement criterion, defined as the square of the relative 
deviations, much better than 0.1%. 

Using these expressions we have analyzed the magnetic 
behavior of two copper complexes exhibiting alternating chain 
structures. These illustrate the use of the model in two relevant 
situations for the exchange alternation, namely a > 1 (dominant 
ferromagnetic exchange) and a < 1 (dominant antiferromagnetic 
exchange). 

The case with dominant ferromagnetic exchange is illustrated 
by the compound Cu(TIM)CuC4 (TIM = 2,3,9, lo-tetramethyl- 
1,4,8,1 l-tetraaztetradecane-1,3,8,lO-tetraenecyclo), recently de- 
scribed by Willett, et al.13 The structure of this compound 
contains CU(TIM)~+ cations bridged by distorted tetrahedral 
anions CuC4*- to form alternating [Cu(TIM)CuCl& chains. 
The magnetic properties exhibit the typical behavior of a F/AF 
chain with a maximum in the xT vs T plot around 20 K (Figure 
3). The developed model results in an excellent fit to the data 
with the best-fit parameters being Jllk = -7.5 K, Jzlk = 22.5 
K (a = 3), and g = 2.1. 

Dominant antiferromagnetic exchange interactions have been 
found in the complex [Cu(bpym)(OH)z(N03)23.2H20 (bpym = 
2,2'-bipyrimidine) recently reported by Julve et al.14 The 
structure consists of chains of Cu(II) alternatively bridged by 
bpym and two hydroxo groups. While the former bridge is able 
to transmit a very strong antiferromagnetic coupling, the 
bridging angles Cu-0-Cu (of ca. 96") favor a relatively strong 
ferromagnetic exchange through the hydroxo groups. Accord- 
ingly, the magnetic behavior exhibits a rounded maximum in x 
at about 120 K (Figure 4), which is clearly situated above that 
predicted for an antiferromagnetic dimer (dotted line). This 
behavior has been satisfactorily reproduced in the overall 
temperature range from the F/AF alternating model giving Jllk 

(12) The minimum values of Tr above which expression 2 is valid are 0.09 
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for a c 2, 0.15 for 2 5 a 5 5, and 0.20 for a > 5. 

1991, 30, 4082. 
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Figure 3. Magnetic behavior of the compound Cu(TIM)CuC4. The 
solid line corresponds to the best fit to the alternating chain model. 
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Figure 4. Magnetic behavior of the compound [Cu(bpym)(OH)z- 
(N03)2)2H20. The solid line corresponds to the best fit to the 
alternating chain model. The behavior of an antiferromagnetic dimer 
with J/k = 150 K is plotted as dashed line. 
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Figure 5. Magnetic specific heat (per spin pair of ions) of [l/2 - '/*IN 
rings for a = 4. 

= -200 K, J2/k = 150 K (a = 0.75), and g = 2.02. Notice 
that in this case the plot of x vs T is preferable to that of XT vs 
T since the former is more sensitive to the exchange alternation 
as we can see from a comparison of Figures 1 and 2. 

Specific Heat 
Now consider the dependence of the magnetic specific heat 

on N (Figure 5). Unlike the magnetic susceptibility, the specific 
heat curves for finite N display a complicated and slower 
convergence, with successive curves crossing at low tempera- 
tures; this feature prevents extrapolation procedures in this 
region. Notice that the crossings are shifted to higher tempera- 
tures as a increases. Above these temperatures the limiting 
curve is very close to the curve for N = 7 and is apparently 
bracketed by the curves for odd N ,  which approach monotoni- 
cally from below, and those for even N ,  which approach 
monotonically from above. Therefore, the calculated curves 
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Figure 6. Magnetic specific heat of the N = 7 ring for different values 
of the altemating parameter a. 

Table 3. Position of Both First and Second Maxima of Specific 
Heat Curves 

Jzll JI I 
0 
1 
2 
3 
4 
5 
6 

1st max 2nd max 
kTmlIJ11 CpJR LT-~IJII CpJR 
0.351 12 1.02350 
0.31328 0.83680 
0.26649 0.71470 
0.2434 0.6681 
0.2425 0.5989 1.5515 0.20159 
0.225 0.5740 2.110 0.18682 
0.22 0.56 2.620 0.17988 

for N = 7 should describe satisfactorily the limiting behavior 
only in this region. 

The curves for N = 7 giving the thermal variation of the 
magnetic specific heat for different values of a are plotted in 
Figure 6 .  The most remarkable feature is the Occurrence of 
two rounded maxima when the two exchange parameters are 
sufficiently different. Thus, the single maximum observed for 
the antiferromagnetic dimer limit (a = 0) broadens, decreases 
in height and is shifted to lower temperatures as a is increased, 
and for a 1 2 a second feature becomes apparent as a shoulder, 
which progressively is resolved into a second maximum of lower 
height. The coordinates of these two maxima for different a 
values are summarized in Table 3. It is interesting to notice 
that the second maximum approaches to the specific heat curve 
of a ferromagnetic dimer as a is increased. Thus, as can be 
seen in Figure 7 the two curves are almost coincident for a > 
10 in this region (their values differ by less than 3% around the 
maximum). Therefore, while the f i s t  maximum depends on 
the two exchange parameters, the second one is only dependent 
on the ferromagnetic exchange. On the other hand, larger 
variations in the specific heat curves are observed for small a 
values (see Table 3 and Figure 6).  For example, the height of 
the maximum is reduced by ca. 20% when a is increased from 
0 to 1, or from 1 to 2; furthermore, under these conditions its 
position is shifted by ca. 10%. 

From the above discussion it may be concluded that for these 
1D systems, specific heat measurements complement magnetic 
measurements. Thus, the presence of two maxima when the 
ferromagnetic exchange is large compared to the antiferromag- 
netic should provide an accurate determination of the two 
exchange parameters. In the other limit (ferromagnetic ex- 
change lesser than or similar to the antiferromagnetic one), the 
fact that the specific heat is much more sensitive to the exchange 
alternation than the magnetic susceptibility makes the thermal 
measurements advantageous for providing information on 
ferromagnetic exchange. Notice, however, that the use of 
specific heat measurements to obtain magnetic information is 
limited by the lattice specific heat, since this contribution 
completely mask the magnetic contribution at temperatures 

0.20 */ 

1 10 
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Figure 7. Magnetic specific heat of the N = 7 ring with dominant 
ferromagnetic exchange (dashed lines with a between 8 and 15). 
Thermal behaviors of a ferromagnetic dimer with Jlk between 8 and 
15 K are given in solid lines. 

Scheme 1 

above 10-15 K. In the present case this fact limits the specific 
heat study to systems with weak or intermediate exchange 
interactions ([J1[ -= 40-50 K and J2 < 20-25 K). 
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Appendix: Description of the Computing Program 

This program has been elaborated for solving the problem 
of a closed spin chain described by the following Hamiltonian: 

Here J1 and 52 are the two types of nearest neighbor interactions, 
and J3 is the next nearest neighbor interaction (see Scheme 1). 

The numerical treatment required for solving the above chain 
Hamiltonian is based on the Bonner-Fisher procedure. Since 
the method may require the extrapolation of the properties of a 
finite length system to an infinite one, it is equivalent to work 
with rings instead of working with open chains. From a 
mathematical point of view this has the advantage of introducing 
an elementary translation symmetry T, which, when applied 
repeatedly, conserves the ring. We assume that some further 
mirror operator S also conserves the ring. The general method 
involves five steps: (i) creating pertinent localized states; (ii) 
deducing symmetrized BlOch states; (iii) calculating the cor- 



Magnetic Properties of Alternating Chains 

responding matrix Hamiltonian; (iv) solving for the eigenvalues; 
(v) calculating the thermal dependence of the thermodynamical 
properties. 

We consider a UV unit cell ring. Starting from the fully 
aligned spin state IS) (total spin S, total component M along 
the quantification axis S), it is possible to get the set of states 
with M = S - 1 by applying the total spin reduction operator 
S - .  These states are gathered in subsets among which each 
one corresponds to one another through a combination of T" (n 
= 1 to 2N) and S' ( E  = 0, 1) operations. Only one state IS - 
1, a) is retained from each subset. Applying S -  to the IS - 1, 
a)'s and operating a similar selection, we get the sets (S - 2, 
p), IM, y), down to M = 0 or l/2 depending on whether S is 
integer of half integer. Now, for each M value, the transforma- 
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tions to symmetrized Bloch states can be written as 

with E = 0, 1; 7 = &l; n = 1, 2, ..., 2N, and 

f+(kn) = cos(2kz(n/iV));f-(kn> = sin(2kz(n/N)) 

It appears from representation theory that the ring Hamiltonian 
has nonvanishing terms between the states: JM, A, k, E ,  7) and 
IM', A', K, E', 7') only for M = M', k = k', and €7 = 6'7'. This 
results in a considerable reduction in the size of the matrices to 
be diagonalized, and therefore it is possible to handle larger N 
values. 


